Part Number Hot Search : 
74ABT10D ISL7442 JMB353 BD6971FS MTZ12 2156S P6KE12CA A1000
Product Description
Full Text Search
 

To Download IRFB16N50K Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1 power mosfet IRFB16N50K, sihfb16n50k features ? low gate charge q g results in simple drive requirement ? improved gate, avalanche and dynamic dv/dt ruggedness ? fully characterized capacitance and avalanche voltage and current ?low r ds(on) ? lead (pb)-free available applications ? switch mode power supply (smps) ? uninterruptible power supply ? high speed power switching ? hard switched and high frequency circuits notes a. repetitive rating; pulse width limi ted by maximum junction temperature. b. starting t j = 25 c, l = 2.2 mh, r g = 25 , i as = 17 a. c. i sd 17 a, di/dt 500 a/s, v dd v ds , t j 150 c. d. 1.6 mm from case. product summary v ds (v) 500 r ds(on) ( )v gs = 10 v 0.285 q g (max.) (nc) 89 q gs (nc) 27 q gd (nc) 43 configuration single n -channel mosfet g d s to-220 g d s a v aila b le rohs* compliant ordering information package to-220 lead (pb)-free IRFB16N50Kpbf sihfb16n50k-e3 snpb IRFB16N50K sihfb16n50k absolute maximum ratings t c = 25 c, unless otherwise noted parameter symbol limit unit drain-source voltage v ds 500 v gate-source voltage v gs 30 continuous drain current v gs at 10 v t c = 25 c i d 17 a t c = 100 c 11 pulsed drain current a i dm 68 linear derating factor 2.3 w/c single pulse avalanche energy b e as 310 mj repetitive avalanche current a i ar 17 a repetitive avalanche energy a e ar 28 mj maximum power dissipation t c = 25 c p d 280 w peak diode recovery dv/dt c dv/dt 11 v/ns operating junction and storage temperature range t j , t stg - 55 to + 150 c soldering recommendations (p eak temperature) for 10 s 300 d mounting torque 6-32 or m3 screw 10 lbf in 1.1 n m www.kersemi.com
2 IRFB16N50K, sihfb16n50k notes a. repetitive rating; pulse width limited by maximum junction temper ature (see fig. 11). b. pulse width 300 s; duty cycle 2 %. c. c oss eff. is a fixed capacitance that gi ves the same charging time as c oss while v ds is rising from 0 to 80 % v ds . thermal resistance ratings parameter symbol typ. max. unit maximum junction-to-ambient r thja -62 c/w case-to-sink, flat, greased surface r thcs 0.50 - maximum junction-to-case (drain) r thjc -0.44 specifications t j = 25 c, unless otherwise noted parameter symbol test conditions min. typ. max. unit static drain-source breakdown voltage v ds v gs = 0 v, i d = 250 a 500 - - v v ds temperature coefficient v ds /t j reference to 25 c, i d = 1 ma - 0.58 - v/c gate-source threshold voltage v gs(th) v ds = v gs , i d = 250 a 3.0 - 5.0 v gate-source leakage i gss v gs = 30 v - - 100 na zero gate voltage drain current i dss v ds = 500 v, v gs = 0 v - - 50 a v ds = 400 v, v gs = 0 v, t j = 125 c - - 250 drain-source on-state resistance r ds(on) v gs = 10 v i d = 10 a b - 0.285 0.350 forward transconductance g fs v ds = 50 v, i d = 10 a 5.7 - - s dynamic input capacitance c iss v gs = 0 v, v ds = 25 v, f = 1.0 mhz - 2210 - pf output capacitance c oss - 240 - reverse transfer capacitance c rss -26- output capacitance c oss v gs = 0 v v ds = 1.0 v, f = 1.0 mhz - 2620 - v ds = 400 v, f = 1.0 mhz - 63 - effective output capacitance c oss eff. v ds = 0 v to 400 v c - 120 - total gate charge q g v gs = 10 v i d = 17 a, v ds = 400 v b -6089 nc gate-source charge q gs -1827 gate-drain charge q gd -2843 turn-on delay time t d(on) v dd = 250 v, i d = 17 a, r g = 8.8 , v gs = 10 v b -20- ns rise time t r -77- turn-off delay time t d(off) -38- fall time t f -30- drain-source body diode characteristics continuous source-drain diode current i s mosfet symbol showing the integral reverse p - n junction diode --17 a pulsed diode forward current a i sm --68 body diode voltage v sd t j = 25 c, i s = 17 a, v gs = 0 v b --1.5v body diode reverse recovery time t rr t j = 25 c, i f = 17 a, di/dt = 100 a/s b - 490 730 ns body diode reverse recovery charge q rr - 5710 8560 nc forward turn-on time t on intrinsic turn-on time is neglig ible (turn-on is dominated by l s and l d ) s d g www.kersemi.com
3 IRFB16N50K, sihfb16n50k typical characteristics 25 c, unless otherwise noted fig. 1 - typical output characteristics fig. 2 - typical output characteristics fig. 3 - typical transfer characteristics fig. 4 - normalized on-resistance vs. temperature 0.1 1 10 100 v ds , drain-to-so u rce v oltage ( v ) 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) v gs top 15 v 10 v 8 .0 v 7.5 v 7.0 v 6.5 v 6.0 v bottom 5.5 v 60 s pulse w idth tj = 25c 5.5 v 0.1 1 10 100 v ds , drain-to-so u rce v oltage ( v ) 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60 s pulse w idth tj = 150c 5.5 v v gs top 15 v 10 v 8 .0 v 7.5 v 7.0 v 6.5 v 6.0 v bottom 5.5 v 4 5 6 7 8 9 10 11 12 13 14 15 16 v gs , gate-to-so u rce v oltage ( v ) 1.0 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 150c v ds = 100 v 60 s pulse w idth -60 -40 -20 0 20 40 60 8 0 100 120 140 160 t j , j u nction temperat u re (c) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 17a v gs = 10 v www.kersemi.com
4 IRFB16N50K, sihfb16n50k fig. 5 - typical capacitance vs. drain-to-source voltage fig. 6 - typical gate charge vs. gate-to-source voltage fig. 7 - typical source-drain diode forward voltage fig. 8 - maximum safe operating area 1 10 100 1000 v ds , drain-to-so u rce v oltage ( v ) 1 10 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0 v , f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 102030405060 q g total gate charge (nc) 0.0 2.0 4.0 6.0 8 .0 10.0 12.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 400 v v ds = 250 v v ds = 100 v i d = 17a 0.2 0.4 0.6 0. 8 1.0 1.2 1.4 1.6 v sd , so u rce-to-drain v oltage ( v ) 0.10 1.00 10.00 100.00 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 150c v gs = 0 v 1 10 100 1000 10000 v ds , drain-to-so u rce v oltage ( v ) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 1msec 10msec operatio n i n this area limited by r ds (on) 100 sec tc = 25c tj = 150c single p u lse www.kersemi.com
5 IRFB16N50K, sihfb16n50k fig. 9 - maximum drain current vs. case temperature fig. 10a - switching time test circuit fig. 10b - switching time waveforms fig. 11 - maximum effective transien t thermal impedance, junction-to-case fig. 12a - unclamped inductive test circuit fig. 12b - unclamped inductive waveforms 25 50 75 100 125 150 t c , case temperat u re (c) 0 5 10 15 20 i d , d r a i n c u r r e n t ( a ) p u lse w idth 1 s d u ty factor 0.1 % r d v gs r g d.u.t. 10 v + - v ds v dd v ds 90 % 10 % v gs t d(on) t r t d(off) t f 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 t 1 , rectang u lar p u lse d u ration (sec) 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 si n gle pulse ( thermal respo n se ) n otes: 1. d u ty factor d = t1/t2 2. peak tj = p dm x zthjc + tc r g i as 0.01 t p d.u.t. l v ds + - v dd dri v er a 15 v 20 v i as v ds t p www.kersemi.com
6 IRFB16N50K, sihfb16n50k fig. 12c - maximum avalanche energy vs. drain current fig. 13a - basic gate charge waveform fig. 13b - gate charge test circuit 25 50 75 100 125 150 starting t j , j u nction temperat u re (c) 0 100 200 300 400 500 600 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 7.6a 11a bottom 17a q gs q gd q g v g charge v gs d.u.t. 3 ma v gs v ds i g i d 0.3 f 0.2 f 50 k 12 v c u rrent reg u lator c u rrent sampling resistors same type as d.u.t. + - www.kersemi.com
7 IRFB16N50K, sihfb16n50k fig. 14 - for n-channel p.w. period di/dt diode recovery dv/dt ripple 5 % body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs = 10 v* v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor current d = p.w. period + - + + + - - - * v gs = 5 v for logic level devices peak diode recovery dv/dt test circuit v dd ? dv/dt controlled by r g ? driver same type as d.u.t. ? i sd controlled by duty factor "d" ? d.u.t. - device under test d.u.t. circuit layout considerations ? low stray inductance ? ground plane ? low leakage inductance current transformer r g www.kersemi.com


▲Up To Search▲   

 
Price & Availability of IRFB16N50K

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X